

BIOCHAR PRODUCTION FROM SEWAGE SLUDGE AND MICROALGAE COMBINATION: PROPERTIES, SUSTAINABILITY AND POSSIBLE ROLE IN A CIRCULAR ECONOMY

A.G. Capodaglio, G. Bernardi, S. Bolognesi, A. Callegari

Department of Civil Engineering & Architecture, University of Pavia, Italy

TATEMENT OF PROBLEM -1

Municipal WWTPs excess sludge production expected in 2020 for the entire EU is about 13 Mt.

Assuming a dried sludge water content of 30%, the total volume of sludge to be disposed yearly would be just short of the volume of FOUR Cheope's

ctatoc 100 75 50 25 Û Malta Greece lceland Cyprus Ireland Bulgaria Norway France Lithuania Hungary Poland Austria Finland Sweden Estonia Romania Slovenia Latvia ltaly Belgium Slovakia Spain **Czech Republio** Netherlands United Kingdom Luxembourg Germany Switzerland Incineration Data not available Compost and other applications Landfill Others Agricultural use

Main sludge disposal options in EU member

QUESTION: WHAT IS THE MOST SUSTAINABLE OPTION

Source: Eurostat, 2016

FATEMENT OF PROBLEM -2

it technological advances have postulated a paradigmatic change in WW treatm ologies: example the Almeria (Spain) WWTP where WW is treated by a mixture o ria and microalgae.

ntages

(or less) O₂ supply

ria remove C

remove N, P and supply O₂

e/algal mix can be digested or converted to fertilizer

Disadvantages Need close to 365 sunny days/year "Sludge" is a mix of m-algae and bacteria Difficult to dewater

May not solve the residuals issue

OSSIBLE SOLUTION

We postulate that co-pyrolys of EMWS, microalgae, and (eventually)

Other excess crop residues (i.e. wine-making residuals, rice straw, roadside grass clippings, etc) is not only effective in

PYROLYSIS PRODUCTS

EXPERIMENTAL SETUP

BIOCHAR PRODUCTION

INITIAL CHARACTERIZATION

INITIAL CHARACTERIZATION

Algae

SAMPLE D, UMWS

AIR TGA RESULTS

SAMPLE	ASH CONTENT
A, Mix	24 %
B, Lab grown Algae	14 %
C, Commercial algae	5 %
D, UMWS	30 %

PYROLYSIS TESTS

PYROLYSIS PRODUCTS

SAMPLE A (MIX) 500°C, Uniform Granulometry, black

SAMPLE D 500°C, Uniform granulometry, black

SAMPLE A (MIX) 350°C, Uniform granulometry, brown

SAMPLE D 350°C, Uniform granulometry, brown

SAMPLE C 500°C, Varied granulometry, black

SAMPLE C 350°C, Varied granulometry, black

Università degli studi di Pavia

PRODUCTS

Pyrolysis sample A

Pyrolysis sample C

Pyrolysis sample D

PYROLYSIS PRODUCTS SUMMARY

SAMPLE		T (°C)	%	% Bio-	%	% H ₂ O
			Biochar	oil	Gas	
		500	63	15	22	
	1	500	62	8	30	
		500	62	13	25	
Sample A		350	81	4	15	5
	2	350	85	6	9	
		350	82	7	11	
		500	50	15	35	5
	3	500	50	14	36	
		500	52	11	37	
Sample C	4	350	82	11	7	
		350	80	10	10	
		350	72	10	18	
		500	64	12	24	
	5	500	61	18	21	
Sample		500	69	14	17	
D		350	87	12	1	9
	6	350	79	13	8	
		350	80	14	6	

BIOCHAR CHARACTERIZATION

TEST	PURPOSE		
TGA in air	Determine ash content		
TGA in nitrogen gas	Verification of pyrolysis completion		
IR	Chem. Bounds Variation after pyrolysis		
Calorimetry	Determine HCC		

SAMPLE	HCC (MJ/kg)
1	16
2	17
3	17
4	16
5	29
6	27

RESULTS DISCUSSION

1. UMWS PYROLYSIS

SAMPLE	REACTOR	Т°С	GAS	INITIAL WEIGHT	REFERENCE
UMWS	Quarts, fluidized bed	350, 450, 550, 950	Не	30 g	(Domı et al., 2009)
UMWS	Tubular fluidized bed	300, 400, 500, 700	Nitrogen	264 – 273 g	(Hossain et al., 2011)
UMWS	Sand bed	350, 500	Nitrogen	20	This work

FRACTI	(Domı et al., 2009)		(Hossain et al., 2011)		This work	
ON	350 °C	550 °C	300 °C	550 °C	350 °C	500°C
% chai	52	40	72.3	57.3	02	65
% oil	10	9	-	-	13	15
% gas	20	21	-	-	5	20

RESULTS DISCUSSION

2. MICROALGAE PYROLYSIS

SAMPLE	REACTOR	T °C	GAS	HEATING RATE	INITIAL WEIGHT	REF.
Chlorella	Sand bed	350, 500	Nitroge n	5 °C/min	20 g	This work
Chlorella- based residuals	Tubular, fluidized bed	300, 400, 500, 700	nitroge n	10 °C/min	0,2 g	(Chang et al., 2015)

T °C	YIELD BIOCHAR (%)
350	78
500	50

DISCUSSION

3. CO-PYROLYSIS OF UMWS and MICROALGAE @ 500 °C

BIOCHAR APPLICATIONS

SOIL AMMENDANT

INORGANIC & ORGANIC POLLUTANTS ADSORBENT

TREATAMENT OF INDUSTRIAL WASTE WATER

ANODIC MATERIAL (MFCs)

FUEL

CONCLUSIONS

- UMWS and algae co-pyrolysis is a sustainable solution to the disposal issue
- Production of solid residue with multiple applications
- Determination of ideal ratio
 UMWS/algae to maximise biochar production

THANK YOU!!! ... and, remember: save th

'Planning Watersheds of the Future' 15th IWA International Watershed & River Basin Management Conference

HOME PROGRAMME SUBMISSIONS COMMITTEES REGISTRATION LOCATION CONTACT

Organized by the IWA Watershed & River Basin Management Specialist Group SG Chairman: John Riddiford, Fellow AICD SG Secretary: Prof. William Stringfellow, PhD Conference Chairman: Prof. Andrea G. Capodaglio, PhD, PE, Fellow IWA, BCEE

https://iwa-network.org/events/15th-iwa-specialist-conference-on-water-basin-and-r iver-management